電力接地與配電
一、接地
1.前言
接地網(wǎng)作為變電所交直流設(shè)備接地及防雷保護接地,對系統(tǒng)的安全運行起著重要的作用。由于接地網(wǎng)作為隱性工程容易被人忽視,往往只注意最后的接地電阻的測量結(jié)果。隨著電力系統(tǒng)電壓等級的升高及容量的增加,接地不良引起的事故擴大問題屢有發(fā)生。因此,接地問題越來越受到重視。變電所地網(wǎng)因其在安全中的重要地位,一次性建設(shè)、維護困難等特點在工程建設(shè)中受到重視。另外,在設(shè)計及施工時也不易控制,這也是工程建設(shè)中的難點之一。因此,為保證電力系統(tǒng)的安全運行,如何降低接地工程造價,本文從設(shè)計的角度談?wù)勛冸娝拥卦O(shè)計中的有關(guān)問題。
2.關(guān)于接地電阻
2.1 接地電阻
《電力設(shè)備接地設(shè)計技術(shù)規(guī)程》(SDJ8—79)中對接地電阻值有具體的規(guī)定,一般不大于0.5Ω。在高土壤電阻率地區(qū),當接地裝置要求做到規(guī)定的接地電阻在技術(shù)經(jīng)濟上極不合理時,大接地短路電流系統(tǒng)接地電阻允許達到5Ω,但應(yīng)采取措施,如防止高電位外引采取的電位隔離措施,驗算接觸電勢,跨步電壓等。根據(jù)規(guī)程規(guī)定,主要是以發(fā)生接地故障時,接地電位的升高不超過2000V進行控制,其次以接地電阻不大于0.5Ω和5Ω進行要求。因此,人們普遍認為,110kV及以上變電所中,接地電阻值小于0.5Ω即認為合格,大于0.5Ω就是不合格,不管短路電流有多大都不必采取措施。這是不合理的。
2.1.1 接地的實質(zhì)是控制變電所發(fā)生接地短路時,故障點地電位的升高,因為接地主要是為了設(shè)備及人身的安全,起作用的是電位而不是電阻,接地電阻是衡量地網(wǎng)合格的一個重要參數(shù),但不是唯一的參數(shù)。
2.1.2 隨著電力系統(tǒng)容量的不斷增大,一般情況下單相短路電流值較大。在有效接地系統(tǒng)中單相接地時的短路電流一般都超過4kA,而青海地區(qū)變電所大部分接地電阻又很難做到0.5Ω。因此,從安全運行的角度出發(fā),不管在什么情況下,都應(yīng)該驗算地網(wǎng)的接觸電勢和跨步電壓,必要時應(yīng)采取防止高電位外引的隔離措施。
2.2 接地短路電流分析
當系統(tǒng)發(fā)生接地故障時,產(chǎn)生的接地短路電流經(jīng)三種途徑流入系統(tǒng)接地中性點。
(1)經(jīng)架空地線—桿塔系統(tǒng);
(2)經(jīng)設(shè)備接地引下線,地網(wǎng)流入本站內(nèi)變壓器中性點;
(3)經(jīng)地網(wǎng)入地后通過大地流回系統(tǒng)中性點。而對地網(wǎng)接地電阻起決定性作用的只是入地短路電流。所以,正確地考慮和計算各部分短路電流值,對合理地設(shè)計地網(wǎng)有著很大的影響。
2.2.1 架空地線系統(tǒng)的影響
對于有效接地系統(tǒng)110kV以上變電所,線路架空地線都直接與變電站內(nèi)出線架構(gòu)相連。當發(fā)生接地短路時,很大一部分短路電流經(jīng)架空地線系統(tǒng)分流,因此,在計算時,應(yīng)考慮該部分分流作用,發(fā)生接地故障時,總的短路電流是一定的,只要增大架空地線的分流電流,就可減小入地短路電流,因此,降低架空地線的阻抗也是安全接地設(shè)計重要的一個分支。架空地線采用良導體,正確利用架空地線系統(tǒng)分流,將使地網(wǎng)的設(shè)計條件更為有利。
2.2.2 入地短路電流
從上述分析可知,入地短路電流是總的接地短路電流減去架空地線的分流,再減去流經(jīng)變壓器中性點的電流(也就是流經(jīng)變電器的零序電流)。如此計算,入地短路電流值相對比較小。由于接地電阻允許值R≤2000I,所以接地電阻相應(yīng)的允許值就比較大,設(shè)計也容易滿足。另外,對于一個給定的地網(wǎng),其接地電阻也基本確定:從R≈0.5ρ/S可知,對實際的接地網(wǎng)面積減少有很大影響。
3.關(guān)于接地裝置的設(shè)計問題
3.1 土壤電阻率的測量
工程土壤電阻率的測量是工程接地設(shè)計重要的第一手資料,由于受到測量設(shè)備、方法等條件的限制,土壤電阻率的測量往往不夠準確。我省地處青藏高原東部,地質(zhì)結(jié)構(gòu)復雜,變電所占地雖然不大,但多為不均勻地質(zhì)結(jié)構(gòu)。現(xiàn)在的實測,往往只取3~4個測點,過于簡單。建議提高測量精度,設(shè)計采用《設(shè)計手冊》中提供的計算平均電阻率的方法,使設(shè)計誤差值減小。
3.2 接地網(wǎng)布置
根據(jù)地網(wǎng)接地電阻的估算公式:R≈0.5ρ/S式中ρ——土壤電阻率(Ω•m),S—接地網(wǎng)面積(m2)R—地網(wǎng)接地電阻(Ω)地網(wǎng)面積一旦確定,其接地電阻也就基本一定,因此,在地網(wǎng)布置設(shè)計時,應(yīng)充分利用變電所的全部可利用面積,如果地網(wǎng)面積不增加,其接地電阻是很難減小的。
3.3 垂直接地極的作用
在110kV變電所中,一般采用水平接地線為主,帶有垂直接地極的復合型地網(wǎng)。根據(jù)R=0.5ρ/S可知,接地網(wǎng)的接地電阻與垂直接地極的關(guān)系不大。理論分析和試驗證明,面積為30×30m2—100×100m2的水平地網(wǎng)中附加長2.5m, 40mm的垂直接地極若干,其接地電阻僅下降2.8~8%。但是,垂直接地極對沖擊散流作用較好,
因此,在獨立避雷針、避雷線、避雷器的引下線處應(yīng)敷設(shè)垂直接地極,以加強集中接地和散泄雷電流。例如,在330kV阿蘭變電所的接地設(shè)計中,通過計算,接地網(wǎng)的設(shè)計全部由水平接地體構(gòu)成,只在避雷針,避雷器附近敷設(shè)少量垂直地極,實際運行證明效果是較好的。
3.4 地網(wǎng)均壓網(wǎng)的設(shè)計
根據(jù)設(shè)計規(guī)程規(guī)定,當包括地網(wǎng)外圍4根接地線在內(nèi)的均壓帶總根數(shù)在18根以下時,宜采用長孔接地網(wǎng),由于110kV變電所占地面積一般不超過100×100m2,考慮均壓線間屏蔽作用,均壓線總根數(shù)一般為8~12根左右,故根據(jù)規(guī)程規(guī)定,一般采用長孔方式布置,但存在以下幾個方面的問題。
3.4.1 方孔地網(wǎng)縱、橫向均壓帶相互交錯,因此地網(wǎng)的分流效果優(yōu)于長孔地網(wǎng),均壓效果比長孔地網(wǎng)好且可靠性高。
3.4.2 長孔地網(wǎng)均壓線與主網(wǎng)連接薄弱,均壓線距離較長,發(fā)生接地故障時,沿均壓線電壓降較大,易造成二次控制電纜和設(shè)備損壞。當某一條均壓線斷開時,均壓帶的分流作用明顯降低,而方孔地網(wǎng)的均壓帶縱橫交錯,當某條均壓線斷開時,對地網(wǎng)的分流效果影響不大。因此,建議在變電所地網(wǎng)設(shè)計時,采用正方孔均壓網(wǎng)設(shè)計,以提高接地安全性。
3.5 接地網(wǎng)的腐蝕
3.5.1 接地網(wǎng)的腐蝕狀況
在我國八十年代及以前變電所的設(shè)計中,很少或根本就沒有考慮地網(wǎng)的腐蝕問題。由于地網(wǎng)腐蝕引起的安全事故屢有發(fā)生,如接地引下線斷開使高壓運行設(shè)備處于無接地狀態(tài),地下主網(wǎng)腐蝕斷裂使地網(wǎng)分割成幾塊,發(fā)生接地時使二次設(shè)備燒壞等。另外,由于地網(wǎng)屬隱蔽工程,埋于地下后不易檢查、修復等,因此,從設(shè)計的角度應(yīng)加大對地網(wǎng)腐蝕的調(diào)查研究,以便有利于系統(tǒng)的安全運行。從330kV花園變、110kV西川變、共和變、紅灣變等地網(wǎng)的改造來看,青海地區(qū)地網(wǎng)的腐蝕問題比較嚴重,花園變運行至今才11年左右,而地網(wǎng)接地線的腐蝕率達40%以上;西川變接地線采用 6mm的圓鋼,幾乎腐蝕斷。一般變電所的設(shè)計年限按25~30年考慮,但地網(wǎng)的實際安全壽命只有10~15年左右,與變電所的設(shè)計年限極不配套。加之,由于系統(tǒng)容量的增加,短路水平的提高,腐蝕后的地網(wǎng)更不能滿足安全運行的要求。
3.5.2 接地網(wǎng)的防腐設(shè)計
接地網(wǎng)的材料一般為扁鋼和圓鋼,其腐蝕狀態(tài)應(yīng)根據(jù)變電所當?shù)氐母g參數(shù)進行計算。但一般情況下其腐蝕參數(shù)很難測定。因此,在工程設(shè)計沒有實際數(shù)據(jù)時(參見相關(guān)標準)。接地線和接地體年平均最大腐蝕速度(總厚度)土壤電阻率(Ω.m)腐蝕速度(mm/a)扁鋼圓鋼熱鍍鋅扁鋼50~300 0.2~0.1 0.3—0.2 0.065 >300 0.1~0.07 0.2~0.07 0.065在計算時,還應(yīng)考慮不同敷設(shè)部位腐蝕情況不同的影響。采用扁鋼接地網(wǎng)的年腐蝕率接地網(wǎng)部位水平接地體設(shè)備引下線電纜溝中的接地帶年腐蝕率mm/a(總厚度)0.1~0.12 0.2~0.3 0.47。
對于一般變電所地網(wǎng)的設(shè)計年限不應(yīng)小于30年,對于重要樞紐變電站的地網(wǎng)壽命應(yīng)按50年考慮。這兩種情況都不大于規(guī)程規(guī)定的設(shè)計年限,但更接近于實際。關(guān)于地網(wǎng)材料的選用問題,常規(guī)選用扁鋼和圓鋼兩種,相同截面的扁鋼與圓鋼與周圍土壤介質(zhì)的接觸面不一致,扁鋼約為50%左右,但由于其腐蝕機理不完全一致,腐蝕結(jié)果基本上一致。這從陜西電網(wǎng)和青海電網(wǎng)地網(wǎng)腐蝕調(diào)查中已得到確認,而且規(guī)程中也提供了不同的腐蝕數(shù)據(jù)。因此,關(guān)于接地材料選用扁鋼還是圓鋼沒有很大差別。關(guān)于防腐的設(shè)計問題,一般應(yīng)考慮在設(shè)計年限內(nèi),采用熱鍍鋅材料。
3.6 接觸電勢與跨步電壓
接觸電勢與跨步電壓是地網(wǎng)安全性設(shè)計的兩個重要參數(shù),新規(guī)范中指出這兩參數(shù)不應(yīng)超過下列數(shù)值:
ut=174+0.17ρ+tu0=174+0.7ρ+t
式中:Ut──最大允許接觸電勢(V)
Uo──最大允許跨步電壓(V)
ρ+──人站立處地表面土壤電阻率(Ω•m)
t──接地短路持續(xù)時間(s)
從以上可知,新規(guī)范中ut、u0比設(shè)計規(guī)程要求的條件更苛刻,更趨于安全,但給地網(wǎng)的設(shè)計帶來的困難也更大。對于一個給定的變電所,短路產(chǎn)生的最大接觸電勢和最大跨步電壓也確定。從上式中可以看出,用提高ρ+值來提高ut、u0的允許值也是合理設(shè)計地網(wǎng)的一個方面。因此,ρ+是一個比較重要的數(shù)據(jù)。當變電所的接觸電勢、跨步電壓不滿足要求時,設(shè)備區(qū)可采用做絕緣操作平臺,做局部均壓網(wǎng),道路采用礫石、碎石或瀝青混凝土等高土壤電阻率路面結(jié)構(gòu)來處理,不宜采用磚、方磚等材料,故地面施工應(yīng)嚴格按照設(shè)計要求進行。
3.7 地網(wǎng)的敷設(shè)
深度規(guī)程和新規(guī)范中明確指出,接地網(wǎng)的埋設(shè)深度宜采用0.6m,《設(shè)計手冊》中又補充到,在凍土地區(qū)宜敷設(shè)于凍土層以下,現(xiàn)設(shè)計中一般將地網(wǎng)全部埋設(shè)于凍土層以下。
3.7.1 地網(wǎng)敷設(shè)深度對最大接觸系數(shù)的影響
最大接觸電勢是地網(wǎng)設(shè)計中的一個重要參數(shù),地網(wǎng)設(shè)計的問題之一就是如何降低地網(wǎng)的最大接觸電勢。地網(wǎng)的接觸電勢的最大接觸系數(shù)Kjm與地網(wǎng)的埋深關(guān)系為:接地網(wǎng)的埋深由零開始增加時,其接觸系數(shù)是減少的,但埋深超過一定范圍后,Kjm又開始增大。這是因為地網(wǎng)最大接觸系數(shù)Kjm和埋深h的關(guān)系曲線(接地網(wǎng)面積A=40×40m2,接地體直徑d=0.01m,網(wǎng)孔個數(shù)n=400個)敷設(shè)深度的不同,在網(wǎng)孔中心地面上產(chǎn)生的電場強度的變化決定的,引起網(wǎng)孔中心地面與地網(wǎng)之間產(chǎn)生的電位差不同。當埋深增加到一定深度后,電流趨向于地層深處流動,地面上的電流密度越來越小,因而網(wǎng)孔中心地面與地網(wǎng)之間的電位差又開始增大,因此,規(guī)程中規(guī)定的敷設(shè)深度是合理的。
3.7.2 敷設(shè)深度對接地電阻的影響
目前所遇到的變電所一般都是處于季節(jié)性凍土地區(qū)。如按規(guī)程規(guī)定,將地網(wǎng)敷設(shè)在0.6m深度時,冬季將使地網(wǎng)處于凍土層中。由于土壤凍結(jié)后其電阻率將增大為原來的3倍以上,對地網(wǎng)接地電阻有一定的影響。目前采用的地網(wǎng)是以水平接地線為主邊緣帶有垂直接地極的復合型地網(wǎng),冬季垂直接地極大部分伸于下層非凍結(jié)土壤中。此時土壤結(jié)構(gòu)可以等效為兩層電阻率不同的土壤結(jié)構(gòu)。有研究表明,對于處于雙層土壤介質(zhì)中的垂直電極,其各部分的散流密度與周圍介質(zhì)的電阻率成反比,除了在電極尖端處,具有ρiJi=常數(shù)(其中Ji為處于電阻率為ρi土壤中的電極部分的散流密度)。此時,當電極有一部分進入下層土壤時,整個電極的散流電阻將主要取決于下層土壤。此時地網(wǎng)的接地電阻也將主要取決于地網(wǎng)的非凍結(jié)土壤。因此,在季節(jié)性凍土地區(qū),采用這種帶有垂直接地極的復合型地網(wǎng)是有很大的優(yōu)點的,如果在冬季由于土壤的凍結(jié),而對接地電阻沒有很大的影響時,就沒有必要把地網(wǎng)都埋于凍土層以下。將地網(wǎng)埋于凍土層以下,對地網(wǎng)的接地電阻來講肯定是有利的。如果結(jié)合變電所基礎(chǔ)的開挖敷設(shè)地網(wǎng)還可以,如果凍土深度為2m,如大武變電所等最大凍土深度為2.4m,單純?yōu)榈鼐W(wǎng)敷設(shè),將使工程開挖土方量大大增加,施工困難。工程造價也隨之上升。規(guī)程中還規(guī)定,接地電阻應(yīng)滿足一年四季變化的要求,這在實際工程中很難做到,冬季土壤的凍結(jié)對接地電阻肯定有影響,但可通過其安全要求的各種因素進行綜合比較,合理控制。因此,在工程設(shè)計中應(yīng)合理的確定地網(wǎng)的埋設(shè)深度。
3.8 關(guān)于降阻劑的使用
近年來,降阻劑在電力系統(tǒng)接地工程中得到了廣泛的應(yīng)用,接地裝置的主要作用是對接地故障電流的擴散,起主要作用的是大地的散流性,而不是地網(wǎng)接觸的局部的土壤電阻率的降低。而降低阻劑的主要作用是降低與地網(wǎng)接觸的局部土壤電阻率,換句話說,是降低地網(wǎng)與土壤的接觸電阻,而不是降低地網(wǎng)本身的接地電阻。其次,對于大型地網(wǎng),由于均壓帶和垂直接地極的存在,屏蔽作用較大,降阻劑的作用一般很小。從110kV甘河灘變,紅灣變等使用效果來看,幾乎沒有作用。國內(nèi)湖南、湖北等地的調(diào)查結(jié)果也大致如此。
4.關(guān)于接地引下線
當發(fā)生接地短路時,首先通過接地電流的就是設(shè)備接地引下線,在我國八十年代的設(shè)計中,往往只取引下線的截面為主網(wǎng)截面的一半,這很不合理。
4.1 接地線截面的熱穩(wěn)定校驗根據(jù)熱穩(wěn)定條件,接地線的最小截面應(yīng)符合下式要求:
S≥Igt/c
式中:S──接地線的最小截面mm2
Ig──流過接地線的短路電流穩(wěn)定值
Ac──材料熱穩(wěn)定系數(shù)(鋼c=70)
t─短路等效持續(xù)時間s
對于引下線可按上式校驗,對于主網(wǎng),考慮主網(wǎng)的分流作用,可按上式的0.7倍考慮。關(guān)于短路等效持續(xù)時間的取值問題,也是近年來引起爭論的問題之一。t值取值的合理與否,對材料使用量有較大的影響。目前各類變電所保護配置不同,是否考慮主保護失靈,采用后備保護動作時間,以及主保護拒動與接地短路同時發(fā)生的概率等,都是值得探討的問題。參照有關(guān)方面的規(guī)定及專題研究,建議對于100kV變電所,取t=1.0s。其次,主網(wǎng)的截面略小些也比較合理,這也是合理設(shè)計地網(wǎng)的一種措施。
4.2 接地引下線設(shè)計應(yīng)注意的幾個問題
4.2.1 接地引下線應(yīng)就近入地,并以最短的距離與地中的主網(wǎng)相連。設(shè)備引下線不應(yīng)與電纜溝中的通長扁鋼連接,因其敷設(shè)于電纜溝內(nèi)壁表面的混凝土上,不起散流作用。發(fā)生短路時,易造成局部電位升高,引起電纜絕緣破壞等。
4.2.2 帶有二次回路的電氣設(shè)備如CT、PT等,為減小接地引下線的阻抗,保證與主網(wǎng)可靠連接,應(yīng)采用兩根截面相同的,每根都能滿足熱穩(wěn)定和腐蝕要求的接地線,在不同的部位與主網(wǎng)連接。
4.2.3 加強主控室及弱電系統(tǒng)與地網(wǎng)連接的可靠性。
4.2.4 不得使用鋼筋混凝土電桿中的主鋼筋作為主要引下線。
5.變電所地網(wǎng)的設(shè)計
應(yīng)結(jié)合實際情況進行,在具體工程設(shè)計中應(yīng)重點考慮地網(wǎng)布置,敷設(shè)深度,腐蝕及熱穩(wěn)定校驗等方面。對合格地網(wǎng)的概念應(yīng)有全面的認識,接地電阻應(yīng)按實際的流經(jīng)地網(wǎng)入地的短路電流計算,降低接地電阻、降低接觸電勢和跨步電壓等都是合格地網(wǎng)要求的主要因素。因此,在保證變電所接地的安全條件下,應(yīng)綜合考慮各種因素,合理地設(shè)計接地裝置以便于變電所的安全運行和施工,降低工程造價。
二、配電系統(tǒng)
1.TN-C系統(tǒng)
TN-C系統(tǒng)被稱之為三相四線系統(tǒng),該系統(tǒng)中性線N與保護接地PE合二為一,通稱PEN線。這種接地系統(tǒng)雖對接地故障靈敏度高,線路經(jīng)濟簡單,但它只適合用于三相負荷較平衡的場所。智能化大樓內(nèi),單相負荷所占比重較大,難以實現(xiàn)三相負荷平衡,PEN線的不平衡電流加上線路中存在著的由于熒光燈、晶閘管(可控硅)等設(shè)備引起的高次諧波電流,在非故障情況下,會在中性線N上疊加,使中性線N電壓波動,且電流時大時小極不穩(wěn)定,造成中性點接地電位不穩(wěn)定漂移。不但會使設(shè)備外殼(與PEN線連接)帶電,對人身造成不安全,而且也無法取到一個合適的電位基準點,精密電子設(shè)備無法準確可靠運行。因此TN-C接地系統(tǒng)不能作為智能化建筑的接地系統(tǒng)。
2.TN-C-S系統(tǒng)
TN-C-S系統(tǒng)由兩個接地系統(tǒng)組成,第一部分是TN-C系統(tǒng),第二部分是TN-S系統(tǒng),分界面在N線與PE線的連接點。該系統(tǒng)一般用在建筑物的供電由區(qū)域變電所引來的場所,進戶之前采用TN-C系統(tǒng),進戶處做重復接地,進戶后變成TN-S系統(tǒng)。TN-C系統(tǒng)前面已做分析,TN-S系統(tǒng)的特點是:中性線N與保護接地線PE在進戶時共同接地后,不能再有任何電氣連接。該系統(tǒng)中,中性線N常會帶電,保護接地線PE沒有電的來源。PE線連接的設(shè)備外殼及金屬構(gòu)件在系統(tǒng)正常運行時,始終不會帶電。因此TN-S接地系統(tǒng)明顯提高了人及物的安全性。同時只要我們采取接地引線,各自都從接地體一點引出,及選擇正確的接地電阻值使電子設(shè)備共同獲得一個等電位基準點等措施,那么TN-C-S系統(tǒng)可以作為智能型建筑物的一種接地系統(tǒng)。
3.TN-S系統(tǒng)
TN-S是一個三相四線加PE線的接地系統(tǒng)。通常建筑物內(nèi)設(shè)有獨立變配電所時進線采用該系統(tǒng)。TN-S系統(tǒng)的特點是,中性線N與保護接地線PE除在變壓器中性點共同接地外,兩線不再有任何的電氣連接。中性線N是帶電的,而PE線不帶電。該接地系統(tǒng)完全具備安全和可靠的基準電位。只要象TN-C-S接地系統(tǒng),采取同樣的技術(shù)措施,TN-S系統(tǒng)可以用作智能建筑物的接地系統(tǒng)。如果計算機等電子設(shè)備沒有特殊的要求時,一般都采用這種接地系統(tǒng)。
4.TT系統(tǒng)
通常稱TT系統(tǒng)為三相四線接地系統(tǒng)。該系統(tǒng)常用于建筑物供電來自公共電網(wǎng)的地方。TT系統(tǒng)的特點是中性線N與保護接地線PE無一點電氣連接,即中性點接地與PE線接地是分開的。該系統(tǒng)在正常運行時,不管三相負荷平衡不平衡,在中性線N帶電情況下,PE線不會帶電。只有單相接地故障時,由于保護接地靈敏度低,故障不能及時切斷,設(shè)備外殼才可能帶電。正常運行時的TT系統(tǒng)類似于TN-S系統(tǒng),也能獲得人與物的安全性和取得合格的基準接地電位。隨著大容量的漏電保護器的出現(xiàn),該系統(tǒng)也會越來越作為智能型建筑物的接地系統(tǒng)。從目前的情況來看,由于公共電網(wǎng)的電源質(zhì)量不高,難以滿足智能化設(shè)備的要求,所以TT系統(tǒng)很少被智能化大樓采用。
5.IT系統(tǒng)
IT系統(tǒng)是三相三線式接地系統(tǒng),該系統(tǒng)變壓器中性點不接地或經(jīng)阻抗接地,無中性線N,只有線電壓(380V),無相壓壓(220V),保護接地線PE各自獨立接地。該系統(tǒng)的優(yōu)點是當一相接地時,不會使外殼帶有較大的故障電流,系統(tǒng)可以照常運行。缺點是不能配出中性線N。因此它是不適用于擁有大量單相設(shè)備的智能化大樓的。